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Abstract 15 

We have collected one year of aerosol chemical speciation monitor (ACSM) data in Magadino, 16 

a village located in the south of the Swiss Alpine region, which is one of the most polluted 17 

areas in Switzerland. We analysed the mass spectra of organic aerosol (OA) by positive matrix 18 

factorization (PMF) using Source Finder Professional (SoFi Pro) to retrieve the origins of OA. 19 

Therein, we deployed the rolling algorithm to account for the temporal changes of the source 20 

profiles, which is closer to the real world. As the first ever application of rolling PMF analysis 21 

for a rural cite, we resolved two primary OA factors (traffic-related hydrocarbon-like OA 22 

(HOA) and biomass burning OA (BBOA)), one local OA (LOA) factor, a less oxidized 23 

oxygenated OA (LO-OOA) factor, and a more oxidized oxygenated OA (MO-OOA) factor. 24 

HOA showed stable contributions to the total OA through the whole year ranging from 8.1–25 

10.1%, while the contribution of BBOA showed a clear seasonal variation with a range of 8.3–26 

27.4% (highest during winter, lowest during summer) and a yearly average of 17.1%. The OOA 27 

was represented by two factors (LO-OOA and MO-OOA) throughout the year. OOA 28 

contributed 71.6% of the OA mass, varying from 62.5% (in winter) to 78% (in spring and 29 

summer). The uncertainties (σ) for the modelled OA factors (i.e., rotational uncertainty and 30 

statistical variability of the sources) varied from ±4% (LOA) to a maximum of ± 40% (LO-31 

OOA). Considering the fact that BBOA and LO-OOA (showing influences of biomass burning 32 

in winter) had significant contributions to the total OA mass, we suggest a reduction and control 33 

of the residential heating as a mitigation strategy for better air quality and lower PM levels in 34 

this region. In Appendix A, we conducted a head-to-head comparison between the conventional 35 

seasonal PMF analysis and the rolling mechanism. It showed similar or slightly improved 36 

results in terms of mass concentrations, correlations with external tracers and factor profiles of 37 

the constrained POA factors. The rolling results show smaller scaled residuals and enhanced 38 

correlations between OOA factors and corresponding inorganic salts than those of the seasonal 39 
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solutions, was most likely because the rolling PMF analysis can capture the temporal variations 40 

of the oxidation processes for OOA sources. Specifically, the time dependent factor profiles of 41 

MO-OOA and LO-OOA can well explain the temporal viabilities of two main ions for OOA 42 

factors, m/z 44 (CO2+) and m/z 43 (mostly C2H3O+). This rolling PMF analysis therefore 43 

provides a more realistic source apportionment (SA) solution, with time-dependent OA sources. 44 

The rolling results show also good agreement with offline Aerodyne aerosol mass spectrometer 45 

(AMS) SA results from filter samples, except for winter. This is likely because the online 46 

measurement is capable of capturing the fast oxidation processes of biomass burning sources. 47 

This study demonstrates the strengths of the rolling mechanism and provides a comprehensive 48 

criterion list for ACSM users to obtain reproducible SA results and is a role model for similar 49 

analyses of such world-wide available data.  50 

1 Introduction 51 

Atmospheric particulate matter (PM) affects human health and climate. In particular, it 52 

influences the radiative balance (IPCC, 2014; von Schneidemesser et al., 2015), reduces 53 

visibility (Chow et al., 2002; Horvath, 1993), and negatively affects human health by triggering 54 

respiratory and cardiovascular diseases and allergies (Daellenbach et al., 2020; Dockery and 55 

Pope, 1994; Mauderly and Chow, 2008; Monn, 2001; Pope and Dockery, 2006; von 56 

Schneidemesser et al., 2015). Fine PM exposure strongly correlates with the global mortality 57 

rate. Lelieveld et al. (2015) estimated that outdoor air pollution, mostly PM2.5 (PM with an 58 

aerodynamic diameter smaller than 2.5 µm) causes 3.3 million premature deaths per year 59 

worldwide. Despite of this correlation, different aerosol sources may have strongly different 60 

effects on health (Daellenbach et al., 2020). Thus, both climate and health effects are affected 61 

by particle chemical composition, which is related to emission sources of primary particles and 62 
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precursor gases for secondary aerosol (IPCC, 2014; Jacobson et al., 2000; Jacobson, 2001; 63 

Lelieveld et al., 2015; Ramanathan et al., 2005). 64 

Organic aerosol (OA) constitutes 20–90% fine PM (Jimenez et al., 2009; Murphy et al., 2006; 65 

Zhang et al., 2007), and contains millions of chemical compounds. Since OA is subject of an 66 

extremely complex mixture of chemical constituents, with highly dynamic spatial and temporal 67 

(seasonal, diurnal, etc.) variability of directly emitted particles and gas-phase precursors and a 68 

complex chemical processing in the atmosphere, elucidation of the chemical composition and 69 

physical properties of OA remains challenging. Identification and quantification of OA sources 70 

with a sophisticated interpolation of both spatial and temporal variabilities are essential for a 71 

development of effective mitigation strategies for air pollution and a better assessment of the 72 

aerosol effect on both health and climate. 73 

OA source apportionment (SA) and PM composition has been studied extensively using the 74 

Aerodyne aerosol mass spectrometer (AMS) (Canagaratna et al., 2007). However, due to the 75 

complexity of the AMS measurements and their high operational expenses, AMS campaigns 76 

are often limited to short time periods of a few weeks to months. The aerosol chemical 77 

speciation monitor (ACSM) allows for unattended long-term observation (>1 year) of non-78 

refractory aerosol particles (Ng et al., 2011a; Fröhlich et al., 2013). It makes it possible to 79 

investigate also the long-term temporal variations of OA sources, which is crucial for 80 

policymakers to introduce or validate aerosol-related environmental policies. 81 

Positive matrix factorization (PMF) has been used in various studies for SA of OA (Aiken et 82 

al., 2009; Hildebrandt et al., 2011; Lanz et al., 2007; Mohr et al., 2012; Schurman et al., 2015; 83 

Zhang et al., 2011). The multilinear engine (ME-2) implementation of PMF (Paatero, 1999) 84 

improves model performance by allowing the use of a priori information (constraints on source 85 

profiles and/or time series) to direct the model towards environmentally meaningful solutions 86 
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(Canonaco et al., 2013; Crippa et al., 2014; Fröhlich et al., 2015; Lanz et al., 2008; Ripoll et 87 

al., 2015). For long-term data (one year or more) with high time resolution, the composition of 88 

a given source could change considerably due to the meteorological and seasonal variabilities. 89 

However, a major limitation of PMF is the assumption of static factor profiles, such that it fails 90 

to respond to these temporal changes. Therefore, long-term chemically speciated data have 91 

been evaluated monthly or seasonally (Bressi et al., 2016; Canonaco et al., 2015; Minguillón 92 

et al., 2015; Petit et al., 2014; Reyes-Villegas et al., 2016; Ripoll et al., 2015) to at least take 93 

the seasonal variations into account. To improve analysis of long-term ACSM datasets, a novel 94 

approach that utilizes PMF analysis on a smaller time rolling window was first proposed by 95 

Parworth et al. (2015) and further refined using ME-2 by Canonaco et al. (2020). The short 96 

length of the rolling PMF window allows the PMF model to take the temporal variations of the 97 

source profiles into account (e.g., biogenic versus domestic burning influences on oxygenated 98 

organic aerosol (OOA)), which normally provides a better separation between OA factors. In 99 

addition, using this technique together with bootstrap resampling and a random a-value 100 

approach allows users to assess the statistical and rotational uncertainties of the PMF results 101 

(Canonaco et al., 2020; Tobler et al., 2020). 102 

In this work, we conducted a one year ACSM measurement from September 2013 to October 103 

2014 in Magadino, located in an alpine valley in southern Switzerland. We present a 104 

comprehensive analysis of the ACSM dataset measured in Magadino using a novel PMF 105 

technique, the “rolling PMF”. In addition, we also compare the results of the rolling PMF with 106 

the source apportionment of offline AMS filter samples (Vlachou et al., 2018) and conventional 107 

seasonal PMF analysis.  108 
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2 Methodology 109 

2.1 Sampling site 110 

Magadino is in a Swiss alpine valley (46°90’37’’ N, 85°60’2’’ E, 204 m.a.s.l.), where the 111 

sampling site located. This site belongs to the Swiss National Air Pollution Monitoring 112 

Network (NABEL, https://www.empa.ch/web/s503/nabel). It is around 1.4 km away from the 113 

local train station, Cadenazzo, around 7 km away from the Locarno Airport, and nearly 8 km 114 

away from the Lake Maggiore. This station is surrounded by agricultural fields within a rural 115 

area, which is considered as a rural background site. It can be potentially affected by domestic 116 

wood burning, adjacent agricultural activity and transit traffic through the valley. The site 117 

topography favours quite high PM levels due to stagnant meteorological conditions or 118 

boundary layer inversions, especially in winter. The annual average PM10 concentration in 119 

Magadino exceeded the annual average PM10 limit value for Switzerland (20 µg·m-3) for five 120 

years out of the period 2007–2016 (Meteotest, 2017; The Swiss Federal Council, 2018). 121 

2.2 ACSM measurements 122 

In this study, chemical composition and mass loadings of non-refractory constituents of 123 

ambient submicron aerosol particles (NR-PM1) were measured by an Aerodyne quadrupole 124 

ACSM (Ng et al., 2011a). The ACSM uses the same sampling and detection technology as the 125 

AMS but is simplified and designated for long-term monitoring applications by reducing 126 

maintenance frequency, at the cost of lower sensitivity, restriction to integer mass resolution, 127 

and no size measurement. Same as for the AMS, sampled submicron particles enter the 128 

instrument through a critical orifice (100 µm I.D.) at a flow rate of 1.4 cm3 s-1 (at 20 °C and 1 129 

atm). The sampling flow will pass either through a particle filter or directly into the system 130 

using an automated 3-way switching valve, that is switched every ~30 s. The sampled particles 131 

are focused by an aerodynamic lens into a narrow beam and impact on a tungsten surface of 132 

around 600 ℃, where the non-refractory particles vaporize and are subsequently ionized by an 133 
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electron impact source (70 eV). The resulting ions are detected by a quadrupole mass-134 

spectrometer up to a mass to charge ratio m/z = 148 Th. The particle mass spectrum is 135 

represented by the difference of the total ambient air signal and the particle-free signal.   136 

The quantification of ACSM data requires an estimation of the fraction of NR-PM1 that 137 

bounces off the oven without being vaporized and therefore is not detected (Canagaratna et al., 138 

2007; Matthew et al., 2008). A collection efficiency (CE) factor is typically introduced to 139 

correct for particle bounce, which depends on the particulate water content (Matthew et al., 140 

2008), ammonium nitrate mass fraction (ANMF) and acidity (Middlebrook et al., 2012). To 141 

eliminate humidity effects on CE, a Nafion membrane dryer (Perma Pure MD) was installed 142 

on the sampling inlet. In this study, we compared both, a constant CE of 0.45 and a time-143 

dependent CE correction suggested by Middlebrook et al., (2012). It showed that data corrected 144 

with a constant CE had a better correlation and slope closer to 1 when comparing with the 145 

chromatographic SO42-, NO3-, and Cl- anions (Fig. S1a). In addition, as more than 93.5% data 146 

have an ANMF smaller than 0.4, only 6.5% of data would be impacted by a time-dependent 147 

CE correction, therefore, the ammonium nitrate particles doesn’t have significant effects on 148 

CE for this dataset. Overall, this dataset agrees with external TEOM measurement of both 149 

PM2.5 and PM10 daily mass concentrations as shown in Fig S1c with a constant CE value. 150 

The ACSM filament burnt out on 14 April, 2014. This was addressed by switching to the 151 

backup filament already installed within the instrument (no venting required). Calibration of 152 

the relative ionization efficiencies (RIE) of particulate nitrate, sulphate, and ammonium was 153 

conducted using size-selected (300 nm) pure NH4NO3 and pure (NH4)2SO4 particles. 154 

Calibrations of the relative ionisation efficiency (RIE), m/z scale, and the sampling flow was 155 

performed every 2 months. In this study, we used the averaged RIEs for nitrate, sulphate, and 156 

ammonium, the exact values are shown in Fig S1. 157 
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2.3 Complementary measurements 158 

Meteorological data, including temperature, precipitation, wind speed, wind direction, and 159 

solar radiation are monitored at the NABEL station. In addition, concentrations of trace gases 160 

(SO2, O3, NOx), equivalent black carbon (eBC), and PM10 were measured with a time resolution 161 

of 10 minutes. We used an aethalometer (AE 31 model by Magee Scientific Inc.) to measure 162 

eBC concentrations. Therefore, we conducted SA of eBC by following Zotter et al. (2017) 163 

using Ångstrom exponents for eBC from traffic 𝛼𝛼𝑡𝑡𝑡𝑡 = 0.9 and wood burning 𝛼𝛼𝑤𝑤𝑤𝑤 = 1.68. 164 

More details about eBC source apportionment are provided in Section 1 of the SI. 165 

2.4 Preparation of the data and error matrices for PMF 166 

In this study, we used acsm_local_1610 software (Aerodyne Research Inc.) to prepare the PMF 167 

input matrix. In total, this dataset includes 19’708 time points and 67 ions. Of these, CO2+-168 

related variables (IO+ (m/z = 16), IHO+ (m/z = 17), and IH2O+ (m/z = 18)) were excluded from the 169 

spectral matrix prior to a PMF analysis. They are reinserted into the OA factor mass spectra 170 

after the PMF analysis using the ratio from the fragmentation table (Allan et al., 2004); the 171 

factor concentrations are likewise adjusted. The measurement error matrix was calculated 172 

according to Allan et al. (2003, 2004), with a minimum error considered for the uncertainty of 173 

all variables in the data matrix as in Ulbrich et al. (2009). Following the recommendations in 174 

Paatero and Hopke (2003) and Ulbrich et al. (2009), the measurement uncertainty for variables 175 

(m/z) with a signal-to-noise ratio (S/N) < 2 (weak variables) and S/N < 0.2 (bad variables) were 176 

increased by a factor of 2 and 10, respectively. In total, 27 weak ACSM variables were down-177 

weighted. Additionally, m/z 12 and 13 were not considered during the PMF analyses, due to 178 

being noisy and their overall negative signal. Moreover, m/z 15 is not only very noisy (S/N = 179 

0.09), but may be also affected by high biases due to potential interference with air signals.  180 
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2.5 Factor analysis of the organic mass spectra 181 

PMF has been demonstrated to be a useful tool to retrieve the sources of measured organic 182 

aerosol mass spectra with a bilinear factor model (Paatero and Tapper, 1994; Ulbrich et al., 183 

2009):  184 

 185 

𝑥𝑥𝑖𝑖𝑖𝑖 = �𝑔𝑔𝑖𝑖𝑖𝑖 × 𝑓𝑓𝑖𝑖𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ 𝑒𝑒𝑖𝑖𝑖𝑖 (1) 

 186 

where 𝑥𝑥𝑖𝑖𝑖𝑖  is the mass concentration of the 𝑗𝑗𝑡𝑡ℎ mass spectral variable in the time point 𝑖𝑖𝑡𝑡ℎ; 𝑔𝑔𝑖𝑖𝑖𝑖 187 

is the contribution of the 𝑘𝑘𝑡𝑡ℎ  factor in the 𝑖𝑖𝑡𝑡ℎ  time point; 𝑓𝑓𝑖𝑖𝑖𝑖  is the concentration of the 188 

𝑗𝑗𝑡𝑡ℎ mass spectral variable in the 𝑘𝑘𝑡𝑡ℎ factor; and 𝑒𝑒𝑖𝑖𝑖𝑖 is the residual of 𝑗𝑗𝑡𝑡ℎ variable of the mass 189 

spectra in 𝑖𝑖𝑡𝑡ℎ  time point. The superscript, p represents the number of factors, which is 190 

determined by the user. The cost function of PMF uses least squares algorithm by iteratively 191 

minimizing the following quantity Q: 192 

 193 

𝑄𝑄 = ��(
𝑒𝑒𝑖𝑖𝑖𝑖
𝜎𝜎𝑖𝑖𝑖𝑖

)2
𝑚𝑚

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 
(2) 

 194 

where 𝜎𝜎𝑖𝑖𝑖𝑖  is an element in the 𝑛𝑛 × 𝑚𝑚  matrix of the measurement uncertainties, which 195 

corresponds point-by-point to xij. In addition, we normalized quantity 𝑄𝑄
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒

 as a mathematical 196 

metric during PMF analysis, where the 𝑄𝑄𝑒𝑒𝑒𝑒𝑝𝑝 is: 197 

 198 
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𝑄𝑄𝑒𝑒xp = (𝑛𝑛 × 𝑚𝑚) − 𝑝𝑝 × (𝑛𝑛 + 𝑚𝑚) 
(3) 

 199 

The 𝑄𝑄
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒

  supports the user to determine the number of factors required for the model by 200 

investigating the effects on this quantity of adding/removing a factor. However, PMF itself 201 

suffers from rotational ambiguity because of the fact that the object function, Q does not 202 

provide unique solutions, that is when 𝐆𝐆 ∙ 𝐅𝐅 = 𝐆𝐆 ∙ 𝐓𝐓 ∙ 𝐓𝐓−𝟏𝟏 ∙ 𝐅𝐅, PMF provides a similar value of 203 

Q but very different solutions (rotated matrix 𝐆𝐆� = 𝐆𝐆 ∙ 𝐓𝐓  (rotated factor time series) and 𝐅𝐅� =204 

𝐓𝐓−𝟏𝟏 ∙ 𝐅𝐅 (rotated factor profiles)). Only one of or even none of these rotated solutions may be 205 

atmospherically relevant. The ME-2 solver (Paatero, 1999) enables theoretically full rotational 206 

control over the factor solutions, which is implanted here by imposing constraints via the a-207 

value approach on one or more elements of 𝐅𝐅 and/or 𝐆𝐆 (Paatero and Hopke, 2009). The a-value 208 

(ranging from 0 to 1) determines how much the resulting factor (𝑓𝑓𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑛𝑛) or time series 209 

(𝑔𝑔𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑛𝑛) can vary from the input reference factor (𝑓𝑓𝑖𝑖,𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡𝑒𝑒𝑛𝑛𝑟𝑟𝑒𝑒) or time series (𝑔𝑔𝑖𝑖,𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡𝑒𝑒𝑛𝑛𝑟𝑟𝑒𝑒) 210 

as shown in Eq. 4a and 4b:  211 

 212 

𝑓𝑓𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑛𝑛 = 𝑓𝑓𝑖𝑖,𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡𝑒𝑒𝑛𝑛𝑟𝑟𝑒𝑒 ± 𝑎𝑎 ∙ 𝑓𝑓𝑖𝑖,𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡𝑒𝑒𝑛𝑛𝑟𝑟𝑒𝑒 
(4a) 

𝑔𝑔𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑛𝑛 = 𝑔𝑔𝑖𝑖,𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡𝑒𝑒𝑛𝑛𝑟𝑟𝑒𝑒 ± 𝑎𝑎 ∙ 𝑔𝑔𝑖𝑖,𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡𝑒𝑒𝑛𝑛𝑟𝑟𝑒𝑒 
(4b) 

 213 

Previous work using a-values has shown to efficiently retrieve environmentally reasonable 214 

PMF solutions. This is due to the presence of legitimate a priori constraints which decrease the 215 

degree of rotational ambiguity (Canonaco et al., 2013, 2020; Crippa et al., 2014; Lanz et al., 216 

2008). Here we configured the ME-2 solver and analysed PMF results using SoFi (Source 217 
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Finder, Datalystica Ltd., Villigen, Switzerland) Pro 6.D interface (Canonaco et al., 2013, 2020), 218 

developed within the IGOR Pro software (WaveMetrics Inc., Lake Oswego, OR, USA).  219 

Running PMF over the long-term ACSM datasets assumes that the OA source profiles are static 220 

within this time window. This can lead to large errors, since OA chemical fingerprints are 221 

expected to vary over time (Paatero et al., 2014). For example, Canonaco et al. (2015) showed 222 

that the variability of summer and winter OOA cannot be accurately represented by a single 223 

pair of OOA profiles. A common way to reduce the model uncertainty arising from this source 224 

is to choose a proper number of OA factors (Sug Park et al., 2000), and then perform a PMF 225 

analysis on a subset of measurements to capture temporal features of OA chemical fingerprints. 226 

Such characterization of OA sources on a seasonal basis has been demonstrated in a number of 227 

studies (Crippa et al., 2014; Lanz et al., 2008; Minguillón et al., 2015; Petit et al., 2014; Ripoll 228 

et al., 2015; Zhang et al., 2019).  229 

2.6 Rolling PMF analysis with ME-2 230 

In this study, we performed PMF runs with a priori constraints (factor profiles) retrieved from 231 

seasonal bootstrap analysis (Section 2.2 in the SI) on a small and rolling window (i.e., 1, 7, 14, 232 

and 28 days) that could move across the entire dataset with a step of one day (Canonaco et al., 233 

2020; Parworth et al., 2015). In addition, we used the bootstrap re-sampling strategy, which 234 

can randomly choose a subset of the original matrix and replicate some of the rows/columns to 235 

create a new same-size matrix (Efron, 1979). Here, we combined this rolling PMF analysis 236 

with the bootstrap strategy and random a-values for constrained factor profiles to estimate the 237 

statistical and rotational uncertainties of this PMF analysis. More details of this novel technique 238 

is found in Canonaco et al. (2020).  239 

https://doi.org/10.5194/acp-2020-1263
Preprint. Discussion started: 22 December 2020
c© Author(s) 2020. CC BY 4.0 License.



12 
 

2.6.1 Window settings 240 

In order to retrieve appropriate constraints, we performed PMF pre-tests and bootstrap analysis 241 

for different seasons. More details of the steps, settings of these analysis can be found in Section 242 

2 of the SI. Here, we constrained primary OA factor profiles (hydrocarbon-like OA factor 243 

(HOA) and biomass burning OA (BBOA)) as well as the factor profile of a local factor (LOA) 244 

using the a-value technique in the rolling PMF analysis. The reference profiles of HOA and 245 

BBOA were from the winter bootstrapped PMF solution (Dec, Jan, and Feb) as shown in Fig. 246 

S6. With a higher contribution of the biomass burning trace ion m/z 60 in the winter, we expect 247 

a more representative and robust BBOA profile from the winter solution than from other 248 

seasons. The LOA profile was retrieved from the summer bootstrapped PMF solution (Jun, Jul, 249 

and Aug) (Fig. S6). To allow the factor profile to adapt itself over time, a random a-value 250 

within a range of 0.4 with a step of 0.1 is applied for HOA and BBOA. Canonaco et al. (2020) 251 

suggested that an upper a-value of 0.4 is sufficient to cover the temporal variation of OA source 252 

profiles. Moreover, due to the uniqueness of the LOA chemical profile, it is tightly constrained 253 

with a constant a-value of 0.05. The LOA factor appeared only after the filament had been 254 

changed (14 April, 2014), and its mass spectrum is dominated by nitrogen-containing 255 

fragments (at m/z 58, 84, and 98). The instrument setup thus influenced strongly the sensitivity 256 

of these components (likely due to influences of surface ionization). Therefore, this factor was 257 

considered in the PMF analysis, but no further interpretation of its potential source will be 258 

covered in this manuscript. 259 

In total, we constrained HOA and BBOA factors with random a-value (0–0.4, with a step of 260 

0.1), and an exact a-value (0.05) for LOA factor in the rolling PMF analysis. There are 25 261 

(N=5×5) possible a-value combinations within an individual rolling window. Therefore, 50 262 

PMF iterations for each time window are sufficient to cover all possibilities of the a-value 263 

combinations. With the rolling window of 50 repeats, each data point (except the data within 264 
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the first and last time window) will actually have many PMF iterations (i.e., N=length of the 265 

window×50), where bootstrap resampling and random combinations of constraints is 266 

performed. This allows to estimate the statistical and rotational uncertainties of the PMF factors 267 

(Canonaco et al., 2020). To find the optimum length of the time windows, we tested four 268 

different lengths of the time windows (N=1, 7, 14, 28) using the same approaches as in 269 

Canonaco et al. (2020). We determined the optimum length of the time window based on the 270 

number of missing data points (un-modelled data due to the selection based on the criteria) 271 

while applying the same thresholds for the same criteria. 272 

2.6.2 Criteria settings 273 

Performing a rolling analysis for a one-year data with 50 repeats per window requires several 274 

tens of thousands of PMF runs. Manual inspection of all PMF runs is impractical and therefore 275 

was replaced by monitoring user-defined criterion scores (Canonaco et al., 2020). In this study, 276 

R2 values of the time series of modelled HOA vs NOx and eBCtr were used for HOA. The 277 

BBOA factor was inspected using the variation of m/z=60 explained by BBOA (Table S1). For 278 

these time series based criteria, (criterion 1 to criterion 3 in Table S1), we deployed student t-279 

test to minimize subjective judgment while determining the thresholds (more discussions in 280 

Section 2.3 of the SI).  281 

Typically, OOA factors are dominated by the signals of f43 (C2H3O+ at m/z = 43) and f44 (CO2+ 282 

at m/z = 44)  that correspond to the less and more oxygenated ion fragments (Canonaco et al., 283 

2015; Ng et al., 2010), where f is the fraction of a variable, i.e. the intensity Im/z normalized by 284 

the sum of the intensities of all organic m/z variables. In this study, we were able to retrieve 285 

two OOA factors (i.e., more oxidized OOA (MO-OOA) and less oxidized OOA (LO-OOA)) 286 

for the whole year, while MO-OOA can be at either at 4th or 5th position because there are two 287 

unconstrained factors. Thus, we used the f44 for the 4th factor to sort the unconstrained OOA 288 
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factors to ensure MO-OOA and LO-OOA sitting on the 4th and 5th position, respectively. The 289 

details of the sorting scheme can be found in Canonaco et al. (2020). At the same time, we also 290 

monitored the f43 in LO-OOA and f44 in MO-OOA to make sure they are not zero. With this set 291 

of criteria, we were able to only select “good” (atmospherically relevant) PMF runs before 292 

averaging. 293 

3 Results and discussion 294 

3.1 Overview of PM1 sources in Magadino 295 

Considering that the major part of eBC is within PM1 (Schwarz et al., 2013), we added eBC to 296 

the total NR-PM1 from the ACSM to perform a mass closure analysis with PM2.5/PM10 from 297 

filters. The gravimetric PM2.5 and PM10 show a high correlation with total estimated PM1 (NR-298 

PM1 +eBC) (Fig. S1c). The slopes of the linear fits (± 1 standard deviation) are 1.62 ± 0.05 (R2 299 

= 0.81, N=79) for PM2.5 vs. PM1 and 1.84 ± 0.03 (R2 = 0.67, N=335) for PM10 vs. PM1. This 300 

means that the estimated PM1 comprised 62% and 54% of the PM2.5 and PM10 mass, 301 

respectively. The daily averages of the inorganic species concentrations measured by the 302 

ACSM and those measured on the filters by chromatography show a high correlation, with R2 303 

= 0.83 for SO42-, R2 = 0.82 for NO3- and R2 = 0.50 for Cl-, with slopes close to 1 (Fig. S1a). 304 

The 2-week average of total ammonium and total nitrate measured by offline AMS technique 305 

agree rather well with the ACSM ammonium (R2 = 0.47) and nitrate (R2 = 0.79), as shown in 306 

the plots in Fig. S1b. The ion balance of particulate ammonium, sulphate and nitrate measured 307 

by the ACSM showed that the measured aerosol particles were mostly neutral. 308 

The daily average PM1 components are shown in Fig. 1a, with the annual average PM1 309 

concentration (including eBC) for the period from September 2013 to October 2014 equal to 310 

10.2 µg m-3. In winter, the average PM1 concentration was highest (13.8 µg·m-3), with OA 311 
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contributing 54% to the total PM1 mass. In summer, the average PM1 mass concentration was 312 

below 10 µg·m-3, but the relative contribution of the OA fraction increased to 62%. 313 

Seasonally averaged diurnal cycles of NR-PM1 and of eBC are displayed in Fig. 2. In this study, 314 

all the data is based on local time (Central European Time). In fall, spring and summer, the 315 

diurnals of these pollutants seem to be mainly affected by the development of the BLH, most 316 

of the species show similar diurnal trends for these three seasons. In addition, summer has the 317 

highest sulphate concentration, due to the enhanced photochemical production. In winter, air 318 

pollutants accumulated during evening and night due to the thermal inversion. In general, eBC 319 

and organics have higher levels due to enhanced biomass burning emissions and lower 320 

boundary layer height (BLH). We observed distinct midday peaks of organics, sulphate, nitrate, 321 

ammonium, chloride, and NOx in the winter. Magadino experienced a series of windless, cold, 322 

but sunny periods from December 2013 to January 2014, including such sharp peaks (Fig. S3a). 323 

It is interpreted to be due to advection within the shallow boundary layer due to the fact that 324 

both primary and secondary pollutants increased simultaneously. Local winds were very low 325 

near the ground but likely locally and regionally induced orography influenced winds including 326 

vertical diffusion processes were initiated during these times that are difficult track without 327 

spatially distributed measurements. . Such phenomena were not observed during cloudy, cold, 328 

and windless days (Fig. S3b) without thermally induced meteorological processes. Unlike other 329 

seasons, the dilution process due to vertical mixing happened only after noon time due to strong 330 

inversions during the night and late irradiation of the valley surface in winter.  331 

3.2 Seasonal PMF Pre-tests 332 

The automated rolling PMF analysis requires the knowledge of the reference profiles as well 333 

as the number of factors. In this section, we present how number of factors were determined 334 

based on seasonal PMF pre-tests. Initially, unconstrained PMF (3 to 6 factors) was performed 335 
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separately for the different seasons by following the SA guidelines provided by Crippa et al. 336 

(2014). Typically, the HOA profile is characterized by a high contribution of alkyl fragments 337 

(e.g. m/z =43, m/z =57) and the corresponding alkenyl carbo cations (e.g. m/z = 41, m/z = 55), 338 

and the factor profile is relatively consistent over time and different locations. The BBOA 339 

profile exhibits significant signals at m/z = 60 and m/z =73, which are well-known fragments, 340 

arising from fragmentation of anhydrous sugars present in biomass-related emissions (Alfarra 341 

et al., 2007). For the unconstrained PMF runs, the HOA profile is present throughout the whole 342 

year, while the BBOA profile exists for all seasons except in summer. However, as shown in 343 

Fig. S4, the measured fraction of m/z = 60 during summer was above the background level of 344 

biomass burning-related air masses, 0.3% ±0.06% (Aiken et al., 2009; Cubison et al., 2011; 345 

DeCarlo et al., 2008). In addition, the scaled residual at m/z = 60 was decreased when a BBOA 346 

factor profile was constrained. Thus, we decided to constrain the BBOA factor for all seasons 347 

to potentially capture some local events, such as agricultural and open fires in summer. 348 

No evidence for the presence of a cooking-related OA (COA) factor was found based on the 349 

seasonal pre-analysis of the key fragments (m/z 55 and m/z 57). It shows no difference in the 350 

slope of the absolute mass concentration of m/z 55 vs m/z 57 for different hours of the day (Fig 351 

S5a), while different seasons show different slopes (Fig S5b). Therefore, a COA factor was not 352 

considered in the PMF model. Moreover, a rapid increase of the measured fraction of m/z = 58, 353 

84, and 98 together with m/z 39 (potassium signal) was observed after a filament exchange on 354 

14 April, 2014. It is likely that the ACSM’s sensitivity towards those ions was changed by the 355 

filament exchange. Also, this LOA factor was present for spring, summer, and autumn in 2014 356 

in unconstrained PMF runs all the time after the filament change. Therefore, we kept this factor 357 

for these three seasons. 358 
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For the factor(s) with secondary origin, PMF models with different number of factors (3–6) 359 

were tested to assess if the oxygenated OA (OOA) factor (with a high contribution of m/z 44 360 

that is likely dominated by the CO2+ ion, derived from decomposition of carboxylic acids 361 

(Duplissy et al., 2011)) is separable without mixing with primary organic aerosol (POA) factors 362 

(Fig. S6). We conducted these tests independently for different seasons (autumn 2013, winter, 363 

spring, summer, autumn 2014).  364 

We analysed winter data first by constraining a HOA factor profile (Crippa et al., 2013) with a 365 

tight a-value of 0.05. The 3-factor solution (with one OOA factor) showed similarly good 366 

agreement of HOA and BBOA with the external tracers (NOx, eBCtr, eBCwb) as the 4-factor 367 

solution (with two OOA factors). However, the scaled residual of m/z 60 was reduced for the 368 

solution with two OOA factors. Moreover, the solution with one OOA factor was not sufficient 369 

to explain the variabilities of measured f44 vs f43 (excluding the primary organic aerosol (POA) 370 

factors). For 5- and 6-factor solutions the BBOA and LO-OOA factors started to split. 371 

Eventually, we selected the 4-factor solution (HOA, BBOA, MO-OOA, LO-OOA) as the best 372 

representation of the winter data. 373 

After the bootstrap seasonal PMF runs of winter data (details in Section 2 of the SI), we 374 

extracted the HOA and BBOA profiles to use them as the reference factor profiles (Fig. S6) for 375 

the pre-tests of other seasons. For the spring, summer, and autumn seasons, 3- to 6-factor PMF 376 

solutions were modelled separately for each season by constraining the HOA (a-value=0.1) 377 

and BBOA (a-value=0.3) profiles. For the 3-factor solution, we observed an OOA factor with 378 

some signals at m/z 58, 84, and 98 which we could not relate to a specific source or process. 379 

Also the scaled residuals of variables showed significant levels for these three ions. When we 380 

increased the number of OA factors from 3 to 4, a factor dominated by m/z 58, 84, and 98 381 

emerged, which we named local organic aerosol (LOA). However, the OOA factor still showed 382 
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slight signals at m/z 58, 84, and 98. An increase in the number of factors from 4 to 5 did not 383 

only result in a decrease in 𝑄𝑄
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒

, but also in “clean” OOA factors without mixing with the LOA 384 

factor. A further increase in the number of factors did not change 𝑄𝑄
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒

 substantially (< 1%), 385 

and the sixth factor was a mathematical split of the LOA factor with m/z 58 as the dominating 386 

variable. Thus, the 5-factor PMF model was chosen as the most appropriate for the spring, 387 

summer, and autumn 2014. Note that we did not add the LOA factor for the autumn season in 388 

2013 since it appeared only after the filament exchange on 14 April, 2014. This LOA factor 389 

was included while running PMF because of the rapid drop of the 𝑄𝑄
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒

 from 4 to 5 factors in 390 

the PMF model, but the source of this factor will not be discussed in the manuscript.  391 

3.3 Full year rolling PMF analysis 392 

Here we present the optimized time window size (14 days) (details of the time window 393 

optimization are given in Section 4 of the SI and Fig S10). In total, we considered 53.4% of 394 

the PMF runs (11087 out of 20750) with only 11 non-modelled data points. The results of the 395 

full-year PMF analysis of the 30-min resolved ACSM data are summarized in Fig. 3. The 396 

relative contributions of the OA factors are in addition shown in Fig. 3b. The primary traffic 397 

related HOA had very little variation (seasonal averages between 8.1 and 10.1%) throughout 398 

the year (Fig. 4). In contrast, BBOA showed a distinct yearly cycle (8.3–27.4%) with a yearly 399 

averaged contribution of 17.1%. It increased significantly (to 27.4%) in winter which is typical 400 

for Alpine valleys (Szidat et al., 2007). It means that biomass burning was the most important 401 

primary OA source during the cold season in Magadino. The eBCwb showed similar trends as 402 

the BBOA factor time series during the cold seasons (Fig. 3c). The contribution of LOA 403 

remained small before the filament was changed on 14 April, 2014, which is expected because 404 

we could not retrieve this factor in seasonal unconstrained PMF runs before April 2014.  405 
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In this study, we retrieved two OOA factors, LO-OOA and MO-OOA. Total OOA (LO-406 

OOA+MO-OOA) contributed substantially to the total OA mass throughout the whole year 407 

with an average contribution of 71.6% (Fig. 3b; Fig. 4). In general, the contribution of OOA to 408 

the total OA mass did not vary distinctly over the seasons, but reached a maximum of 90.1% 409 

on 12 June, 2014, the day with the highest daily average temperature (30.7 °C).  410 

In this work, we did head-to-head comparisons between the bootstrap seasonal solutions and 411 

the rolling PMF results (see Fig. A1, Fig. A2, Fig. A3, and Table A1 in the Appendix) in terms 412 

of mass concentrations, factor profiles, scaled residuals, and correlations between time series 413 

for each factor and corresponding external tracers. We found consistent factor profiles and 414 

mass concentrations for the constrained factors (i.e., HOA, BBOA, and LOA), while OOA 415 

factors showed quite some differences in both mass concentrations and factor profiles. Rolling 416 

PMF provided slightly better correlations and smaller scaled residuals, therefore, we consider 417 

rolling PMF results to be more environmentally reasonable than those of the seasonal PMF 418 

(more details in Appendix A). 419 

3.3.1 Optimized OA factors retrieved from a rolling PMF model 420 

The primary and secondary OA factors retrieved as an annual mean of all optimized PMF 421 

solutions together with their diurnal cycles for all seasons are shown in Fig. 5. Seasonal 422 

variations of the OOA factor profiles are demonstrated in Fig. 7 and further discussed in more 423 

detail in Section 3.3.2. Note that the primary factors (HOA, BBOA, and LOA) were constrained, 424 

where the LOA profile was tightly constrained with an a-value of 0.05 due to the uniqueness 425 

of its chemical profile. Therefore, only a small variation was allowed for LOA, while the HOA 426 

and BBOA model profiles varied more due to looser constraints (Fig. S8). HOA and BBOA 427 

have averaged a-values of 0.207, and 0.195, respectively. In addition, they both had good 428 

agreement with previous studies (Crippa et al., 2014; Ng et al., 2011b). The probability 429 
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distribution function (PDF) of applied a-values over time was also investigated (Fig. S8). Most 430 

selected runs chose a-values of 0.1–0.3 for HOA and BBOA. The OOA factors show larger 431 

variations in the chemical profiles because these two factors were not constrained due to the 432 

high variability of oxidation processes governing the secondary factors. 433 

Due to extensive residential wood combustion combined with winter inversions, the 434 

concentrations of BBOA and eBCwb were three times higher at night than at midday. As 435 

discussed above, during winter, all of the air pollutants, including all PMF factors peaked 436 

concurrently at 10–11 a.m. (local time) due to development of the mixed boundary layer (light 437 

blue markers in Fig. 2 for total PM1 and Fig. 5b). In summer, an additional local photochemical 438 

production led to an increasing MO-OOA mass during the day (red markers in Fig. 5b), 439 

similarly to the diurnal behaviour of sulphate (R2=0.63). A night-time increase and a daytime 440 

decrease of the LO-OOA mass during spring and summer apparently followed condensation 441 

and re-evaporation cycles of semi-volatile species, similar to the behaviour of ammonium 442 

nitrate. Additionally, nocturnal chemistry of NO3/N2O5 radicals could lead to formation of 443 

HNO3 via N2O5 hydrolysis and of organic nitrates via oxidation of VOCs (Brown et al., 2004; 444 

Dentener and Crutzen, 1993), thus influencing the diurnal cycles of both particulate nitrate and 445 

LO-OOA (with R2 = 0.48 for spring and R2 = 0.36 for summer).  446 

In Fig. 6, we also present the diurnal cycles of HOA, eBCtr and NOx with different patterns for 447 

weekdays and weekends. The hourly averages of HOA and eBCtr as well as the NOx mixing 448 

ratio peak during the morning and evening rush hours over the weekdays, while on the 449 

weekends there is only an evening pollution increase coinciding with the time when people 450 

come back from holidays or night-time leisure activities. 451 

 452 
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3.3.2 f44/f43 analysis of secondary OA factors 453 

While m/z 44 is mostly from the fragment of CO2+, a fingerprint of oxygenated species, m/z 43 454 

can originate from C2H3O+ (a fingerprint of semi-volatile species) or C3H7+ (a fingerprint of 455 

the primary emissions of hydrocarbon-like species) (Canonaco et al., 2015; Duplissy et al., 456 

2011; Ng et al., 2010). Thus, f44 and f43 are often used to identify the oxidation state of the 457 

factors, which is important to differentiate the MO-OOA and LO-OOA factors. Under the 458 

premise that the POA factors and the LOA factor are all well-resolved, it is important to 459 

investigate the relationship between the m/z 44 and m/z 43 signals in the OOA factors to 460 

determine whether or not one/two OOA factors are sufficient to explain the dataset. In addition, 461 

the shapes of the clouds shown in an f44 vs f43 plot may also include some source-related 462 

information. Figure 7 depicts the relationship between f44 and f43 of the two modelled OOA 463 

factors for different seasons. The yellow cloud of data points represents the measured f44 vs f43 464 

after subtracting the m/z 44 and m/z 43 signals contributed by the primary HOA, BBOA and 465 

LOA factors. They are colour coded by the total OA mass concentration (data points with OA 466 

mass concentration below 2 µg·m-3 are hidden). 467 

As shown in Fig. 7a, the data points in Sep–Oct (both in 2013 and 2014) were located on the 468 

right side of the triangle presented first by Ng et al. (2010), while the November (2013) data 469 

points were located within the triangle. In addition, the spring and summer data points (Fig. 7c 470 

and Fig. 7d) were all located rather on the right side of the triangle, but the winter points lied 471 

within the triangle (Fig. 7b). The data points located within the triangle correspond to the time 472 

with lower temperature than those are closer to the right side of the triangle (Fig. S9). This 473 

could be explained by the increased biogenic OOA emissions when the temperature was higher, 474 

as biogenic OOA tends to be distributed along the right side of the triangle (Canonaco et al., 475 

2015; Pfaffenberger et al., 2013). Also, when the temperature decreases, the increased biomass 476 
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emissions make the OOA points to lie vertically within the triangle (Canonaco et al., 2015; 477 

Heringa et al., 2011), which is the case for the winter data (Fig. 7b).  478 

In July 2014, the rolling PMF LO-OOA moved towards the left side of the plot due to 479 

increasing influences from m/z 80, m/z 94 (C2H6S2+), m/z 95, and m/z 96 (Fig. S7). Because the 480 

OA signal of m/z 80 is directly calculated from m/z 94 (Allan et al., 2004), we did not 481 

investigate the sources of m/z 80. A potential source of these distinct ions in July is dimethyl 482 

disulphide, which shows signals at m/z 94, m/z 95, and m/z 96 (NIST Mass Spectrometry Data 483 

Center, 2014). Dimethyl disulphide is widely used in pesticides. Considering that the sampling 484 

site is in the middle of farmland, and the diurnal variation of m/z 94 appeared to have peaks 485 

during the daytime, we considered the LO-OOA in July to be highly affected by the agricultural 486 

activities. However, the static factor profiles of summer LO-OOA from the seasonal summer 487 

solution had much smaller intensities for m/z 80 and m/z 94 (Fig. S6), which enhanced the 488 

scaled residuals for these two variables in the seasonal solutions. 489 

In winter, LO-OOA (Fig. 9b) was highly affected by biomass burning emissions characterized 490 

by the presence of m/z 60, 73 (Alfarra et al., 2007), and the  LO-OOA position in the f44 vs f43 491 

space moved towards the right top direction in the plot due to the increasing biogenic influence 492 

as the temperature rose (Fig. 7b, Fig. S9) (Canonaco et al., 2015). 493 

Figure 7 also highlights the advantages of rolling PMF over seasonal PMF due to its time-494 

dependent source profiles. For all the seasons, both seasonal and rolling results show that the 495 

linear combinations of OOA factors could properly explain most of the measured OOA points. 496 

However, with the static OOA factors for seasonal PMF solutions, it remains difficult to 497 

capture the variabilities of some measured data points, while the rolling PMF OOA factors are 498 

able to move correspondingly with the temporal changes of the clouds, which moves the factor 499 

profiles closer to reality and potentially decreases the scaled residuals significantly (Fig. A3). 500 
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Figure S9 also shows the movements of LO-OOA and MO-OOA factor profiles monthly, 501 

where LO-OOA moves towards the right direction as the temperature increases, except for the 502 

two light blue squares (June and July) in Fig. S9a. It is clear that temperature plays an important 503 

role for the positions of LO-OOA and MO-OOA in the f44 vs f43 space due to its influences on 504 

the OOA sources (biogenic or anthropogenic) as well as the atmospheric processes, which is 505 

consistent with previous studies in Zurich (Canonaco et al., 2015). 506 

3.3.3 Statistical and rotational uncertainties 507 

As suggested by Canonaco et al. (2020), combining the bootstrap resampling and the random 508 

a-value techniques together with the rolling mechanism, we calculated the standard deviation 509 

(σ) and the mean (µ) of the mass concentration for each data point from each OA factor in 510 

selected “good” PMF runs. We estimated uncertainty of each OA factor using the slope of the 511 

linear fit of σ vs µ. (Fig. 8.). Since the LOA factor was tightly constrained with an a-value of 512 

0.05, it has the smallest variability (4%). Overall, we found relatively smaller errors of HOA, 513 

BBOA, and MO-OOA  (i.e., 18%, 14%, and 19%, respectively) and an error of 25% for LO-514 

OOA which is comparable with the previous study (Canonaco et al., 2020). The errors for both 515 

the MO-OOA and the LO-OOA factor showed some temperature dependence. However, this 516 

actually varied with time, and the errors did not significantly change when we separated the 517 

dataset into four different temperature groups. Still, data points with higher temperature tend 518 

to have larger error for the total OOA than with lower temperature (Fig. 8f). This is because 519 

more complex aging processes for OOA factors at high temperature (>20 °C) can cause more 520 

variability for the OOA factors.  521 

3.3.4 Online vs. offline 522 

The mass concentrations for HOA, BBOA, and total OOA were compared with corresponding 523 

off-line AMS results (Vlachou et al., 2018) (Fig. S11). Despite some disagreement during 524 
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winter (BBOA and total OOA), BBOA showed a high correlation –with the offline results for 525 

both PM10 and PM2.5, with R2 of 0.83 and 0.84, respectively. The correlation for total OOA 526 

was somehow lower, with R2 of 0.31 and 0.46 for the offline results of PM10 and PM2.5 OOA, 527 

respectively. The enhanced OOA concentration for the rolling results during winter season 528 

compared to the offline SA results (Fig. 9a), as well as the differences between the rolling 529 

results and the offline PM2.5/PM10 results regarding BBOA are most likely due to the fact that 530 

the LO-OOA was heavily affected by biomass burning (Fig 9b). The offline results apportioned 531 

this biomass burning affected LO-OOA into BBOA, whereas the online ACSM measurements 532 

with a higher time resolution were capable to capture the fast oxidation process of biomass 533 

burning sources. In addition, the rolling PMF technique enabled the LO-OOA factor profile to 534 

adapt to the temporal viabilities of OA sources, so the relatively aged biomass burning related 535 

sources was apportioned into LO-OOA during winter time by rolling PMF. The yellow line in 536 

Fig. 9a depicts the mass concentration of m/z 60 within LO-OOA, which clearly shows 537 

significant enhancements during winter, as well as a good agreement with the LO-OOA time 538 

series. HOA did not correlate at all, which may be expected because HOA is not water soluble, 539 

and therefore has a very low recovery rate of 0.11 for the offline AMS technique based on the 540 

previous study by Daellenbach et al. (2016).  541 

4 Conclusions 542 

In this study, we conducted the first rolling PMF analysis on a 13-month ACSM data collected 543 

at a rural site of Switzerland. With the help of the a short rolling PMF time window together 544 

with the random a-value and bootstrap resampling analysis, we obtained a time dependent SA 545 

result with error estimations. Overall, we resolved a comprehensive 5-factor solution with 546 

HOA, BBOA, LOA, MO-OOA, and LO-OOA. The contribution of HOA was constant during 547 

the year (8.1–10.1%), while BBOA showed a clear seasonal variation (8.3–27.4%), which 548 

peaked during winter (due to an increased residential heating source) and contributed least in 549 
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summer. OOA was a dominant source throughout the year with a contribution of 71.6% on a 550 

yearly average. However, the biomass burning source had a strong influence on LO-OOA 551 

formation in winter. Together with BBOA, they make residential heating a considerable source 552 

at Magadino during winter. Therefore, a mitigation of residential wood combustion should be 553 

considered for a reduction of PM levels in Magadino, especially in winter.  554 

This manuscript also provided a recommended criterion list (Table S1) as well as a novel way 555 

to define thresholds with minimum subjective judgements (student’s t-test), which could be a 556 

leading example for other SoFi Pro users to conduct rolling PMF. To ensure a good 557 

representation of the modelled POA factors and to validate the SA results, we also used the 558 

correlations between the PMF factor time series and external data. Both HOA and BBOA 559 

agreed well with the corresponding external tracers (NOx, eBCtr, and eBCwb) for the yearly 560 

cycles, except summer. This is because the aethalometer model for eBC SA has higher 561 

uncertainties with smaller eBCwb mass concentrations. Also, NOx could originate from multiple 562 

sources in this season. Therefore, we used HOA vs. eBC and 𝐸𝐸𝐸𝐸60,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 to justify these two 563 

factors in summer. The correlation of HOA vs eBC had an R2 of 0.28, with an 𝐸𝐸𝐸𝐸60,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 of 564 

0.55 in summer. Moreover, the MO-OOA and LO-OOA factors correlated well with inorganic 565 

SO4 and NO3, respectively. The identified primary and secondary OA factor profiles were 566 

consistent with the OA factors previously found at a variety of urban, rural, and remote 567 

European locations.  568 

This paper assessed the statistical and rotational uncertainties of the PMF solution by 569 

combining the bootstrap resampling technique and the random a-value approach. It shows 570 

relatively small errors for constrained factors compared with a previous study in Zurich 571 

(Canonaco et al., 2020), and comparable errors for the OOA factors.  572 
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We also presented a head-to-head comparison between seasonal PMF solutions and the rolling 573 

PMF solution. The POA factors showed good agreement between seasonal and rolling PMF 574 

solution, while the OOA factors exhibited greater differences. Overall, the rolling PMF 575 

retrieved a somewhat better solution in terms of agreement with external tracers, but much 576 

better correlations between the OOA factors and corresponding inorganic salts. In addition, the 577 

rolling PMF results provided more realistic results by adapting the temporal variations of OOA 578 

factors in the f44 vs f43 space, which also led to much smaller scaled residuals than for the 579 

seasonal PMF. The time series of BBOA and total OOA agreed well with those from offline 580 

AMS AS results (Vlachou et al., 2018), except for winter when the fast oxidation processes of 581 

biomass burning emissions were not captured by the offline AMS technique.  582 

Knowledge of diurnal, seasonal and annual changes in OA sources is essential for interpreting 583 

the yearly cycles of OA and defining mitigation strategies for air quality. With the help of more 584 

accurate and realistic OA sources together with an estimation of the statistical uncertainty of 585 

PMF more constraints can be provided both for climate and air quality models. These improved 586 

results are therefore highly valuable for policy makers to solve aerosol-related environmental 587 

issues.  588 

5 Appendix A: Comparison between seasonal and rolling PMF 589 

solutions 590 

The bootstrapped seasonal PMF solutions were compared with the full year rolling PMF results 591 

as follows. For each factor, the correlations with external data, the ion intensities in the factor 592 

profiles, and the mass concentrations retrieved from the two different source apportionment 593 

techniques were compared. The correlations of the factor time series with external data (i.e., 594 

NOx, eBCtr, eBCwb, eBCtotoal, SO4, NO3, and NH4) are presented in Table A1. The rolling 595 

results showed generally slightly better correlations between LO-OOA and NO3, MO-OOA 596 
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and SO4, and total OOA with NH4 than the seasonal PMF results, which is consistent with the 597 

comparison results from Canonaco et al. (2020). A significant improvement was evident for 598 

LO-OOA vs NO3 in spring (with R2 increasing from 0.02 to 0.48). Concerning the correlations 599 

of POA factors with external data, rolling results and seasonal showed similar results 600 

Table A1 Correlation coefficients (𝑅𝑅𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡𝑠𝑠𝑠𝑠𝑛𝑛2 ) between the factor contribution and expected 601 
tracers over the year and for individual meteorological seasons (p<0.05). 602 

Factor Yearly SON_2013 DJF MAM JJA SON_2014 
Seasonal Rolling Seasonal Rolling Seasonal Rolling Seasonal Rolling Seasonal Rolling Seasonal Rolling 

HOA / NOx 0.37 0.35  0.52  0.5  0.46 0.47  0.34  0.36  0.15  0.15  0.44  0.42 
HOA / 
eBCtr 

0.34 0.33  0.29  0.35  0.41  0.42   0.39  0.31 N/A N/A  0.38  0.39 

HOA / eBC 0.55 0.51  0.79 0.77  0.77 0.73 0.5 0.41 0.29 0.28 0.5 0.47 

BBOA / 
eBCwb 0.82 0.82  0.81  0.79  0.84  0.81  0.67  0.6 N/A N/A  0.3  0.27 

MO-OOA / 
SO4

2- 0.58 0.49  0.49 0.61  0.52  0.49  0.62  0.66  0.63  0.57  0.43  0.46 

LO-OOA / 
NO3

- 0.11 0.32  0.28 0.42  0.28  0.23  0.02  0.48  0.33  0.36  0.19  0.29 

OOA/ NH4
+ 0.46 0.44  0.52 0.55  0.34 0.26 0.73 0.75 0.48 0.47 0.57 0.59 

 603 

As shown in Fig. A1 Comparison of the mass concentrations resulting from rolling PMF 604 

and from the seasonal analysis for each factor (colour coded by date and time)., which 605 

shows a good agreement for two techniques, except for MO-OOA and LO-OOA. In general, 606 

the slope of 1.09 for rolling total OOA vs seasonal OOA suggests a slight underestimation of 607 

the OOA contribution by the seasonal PMF solutions, while the slope (<1) for HOA and BBOA 608 

suggests that the seasonal PMF solutions overestimate HOA and BBOA. In addition, LOA 609 

shows the best agreement between the seasonal and rolling solutions, due to the tight constraint 610 

of LOA with an a-value of 0.05.  611 

The LO-OOA and MO-OOA factors showed worse agreement than the POA factors for the 612 

whole dataset. They had good correlations in each meteorological season, however, with 613 

different slopes. For instance, seasonal PMF underestimated LO-OOA in spring and fall 2014, 614 

but both seasons showed high correlation with rather narrow scattering. The underestimation 615 

of LO-OOA by seasonal PMF was compensated by the overestimation of MO-OOA for these 616 
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two seasons, therefore, the summed OOA still showed a high correlation between rolling and 617 

seasonal PMF results. This is expected, as the rolling PMF allows the source profiles to adapt 618 

to temporal variations, while seasonal PMF only has static source profiles.  619 

 620 

Fig. A1 Comparison of the mass concentrations resulting from rolling PMF and from the 621 
seasonal analysis for each factor (colour coded by date and time). 622 

 623 

The differences in the major variables of the OOA factors (i.e., m/z 44, 43, and 60) shifted the 624 

mass concentrations significantly. Therefore, we also compared the factor profiles for both 625 

techniques (Fig. A2). For instance, LO-OOA during spring showed higher intensity at m/z 44 626 

for the rolling PMF results than for the seasonal PMF results (Fig. A2), which caused the 627 

underestimation of LO-OOA for the seasonal PMF in spring. When we averaged the total OOA 628 

factor using mass-weighted MO-OOA and LO-OOA factors, rolling PMF yielded higher m/z 629 

60 for all seasons. As a result, seasonal PMF slightly underestimated the summed OOA factors 630 

by around 9%, but slightly overestimated the POA factors by less than <6%. 631 
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The profiles of the constrained factors (HOA, BBOA, LOA) from the rolling results show very 632 

high correlation with the seasonal results (Fig. A2), which suggests that the primary factors 633 

and the tightly constrained factor (LOA) were consistent with the static profiles from the 634 

seasonal PMF analysis. 635 

 636 

Fig. A2 Profile comparisons between rolling results and seasonal results for each factor (log 637 
scale). 638 

 639 

We compared the scaled residuals from both source apportionment techniques (Fig. A3). The 640 

rolling PMF solution had smaller scaled residuals (narrower histogram and the centre was 641 

closer to 0) than that of the seasonal PMF solution, which is expected because rolling PMF had 642 

more flexibility to adapt to the temporal variabilities of the OA sources. 643 
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 644 

 645 

Fig. A3 Distribution of the scaled residuals over the whole year for the seasonal solution (a) 646 
and rolling solution (b). 647 

 648 

Summarizing, HOA and BBOA were consistent for both rolling and seasonal PMF analysis in 649 

terms of the time series, correlations with external tracers, and factor profiles due to the 650 

consistency of their chemical factor profiles. In contrast, the MO-OOA and LO-OOA factors 651 

were more scattered in terms of averaged factor profiles and mass concentration, which 652 

suggests that seasonal PMF analysis was not sufficient to capture these temporal variabilities 653 

of their oxidation processes. Also, rolling PMF showed smaller scaled residuals. Therefore, we 654 

conclude that the rolling PMF analysis provides more realistic results than the seasonal analysis. 655 
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 984 

 985 

Fig. 1 Chemical composition of PM1 in Magadino 2013-2014 – daily (a), seasonal (b) and 986 

annual (c) averages. The labels indicate the non-refractory organics (Org), sulphate (SO4), 987 

nitrate (NO3), ammonium (NH4) and chloride (Cl) ions measured by ACSM, and the black 988 

carbon (BC) measured by light absorption. 989 

 990 

Fig. 2 Seasonal diurnal cycles of PM1 constituents calculated as an hourly average for ACSM 991 

organic and inorganic species (sulphate, nitrate, ammonium, and chloride) and black carbon 992 
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 993 

Fig. 3 Annual cycle of OA sources: (a) absolute and (b) relative OA contributions plotted as 994 

30-min resolved time series, (c) BC source apportionment. 995 
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 996 

Fig. 4 OA pie charts for the whole year and for different seasons.  997 
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 998 

Fig. 5 Overview of the primary and secondary OA sources in Magadino in 2013-2014: (a) OA 999 

factor profiles and (b) seasonal diurnal cycles of HOA, BBOA, LOA, MO-OOA, and LO-1000 

OOA. The ambient temperature is shown on the LO-OOA diurnal plots, respectively. In (a) the 1001 

error bar is the standard deviation; the black bars show the maximum and the minimum that 1002 

the variable allowed to be vary from the reference profiles. The average, 10th and 90th 1003 

percentiles for a-values of HOA are, 0.195, 0.007 and 0.378, respectively. Also, the average, 1004 

10th and 90th percentiles for a-values of BBOA are 0.202, 0.025 and 0.379, respectively. 1005 
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 1006 

Fig. 6 Diurnal cycles of HOA (grey symbols), black carbon apportioned to traffic emissions 1007 

eBCtr (dashed lines) and NOx (dotted lines) for weekdays (a) and weekends (b). The shaded 1008 

areas represent interquartile range for 1-hour average HOA. 1009 

 1010 

Fig. 7 OOA f44 and f43 for four different seasons. The yellow cloud of data points represents the 1011 

f44 vs f43 by subtracting the f44 and f43 contributed from HOA, BBOA and LOA factors. They 1012 

are color coded by the total OA mass concentration. The circles, triangles, and squares 1013 
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represent the ratio between f44 and f43 intensities within the factor profiles of MO-OOA and LO-1014 

OOA, respectively. While the smaller size of circles, triangles, and squares are from rolling 1015 

PMF analysis, which are color coded by the date and time. The dash line are the Sally’s triangle 1016 

from (Ng et al., 2011) and depicts the region where several PMF OOA from the last decade 1017 

resided in the f44 vs f43 space. 1018 
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 1019 

Fig. 8 Absolute statistical uncertainties of PMF for HOA, BBOA, LOA, LO-OOA, MO-OOA 1020 

and total OOA (LO-OOA+MO-OOA) for all data. The data points colour-coded all data points 1021 
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by temperature. The PMF error (uncertainties) of selected PMF runs and rotational 1022 

uncertainties is estimated using the slope of the linear regression of standard deviation (σ) vs. 1023 

the averaged mass concentration (µ) for each factor. 1024 

 1025 

 1026 

Fig. 9 (a) Time series of total oxygenated organic aerosol (LO-OOA+MO-OOA) from online 1027 

and offline source apportionment solutions, together with f60 in LO-OOA for online solution, 1028 

and levoglucosan in PM10 filter; (b) Averaged LO-OOA factor profile from online solution 1029 

during DJF (Dec, Jan, and Feb), when online total OOA is significantly higher than that of 1030 

offline solutions. 1031 
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